Nominally pure stoichiometric LiNbO3
shows lower photorefractive damage resistance than congruent crystal;
however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact maintenant
Compared with congruent LN (cLN) crysal, the electro-optic
coefficient, nonlinear optical coefficient, periodic polarization
reversal voltage and applied photorefractive properties of
stoichiometric LN (sLN) crystal are greatly improved. With such excellent
physical properties and wide application prospects, sLN crystal has rapidly become a competitive optoelectronic
material.sLN crystals are expected to be thermodynamically stable up to their melting temperature at 1170°C, while keeping a largerelectrical resistivity than cLN crystals by one order of magnitude at any temperature.
Contact maintenant
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. KDP are also excellent
electro-optic (EO) crystals with high EO coefficients, thus popularly
used as EO modulators and Pockels cells for Q-switched
lasers.
Contact maintenant
LiNbO3 crystal is a low cost photoelectric material with good mechanical
and physical properties as well as high optical homogeneity. It has
been widely used as frequency doublers for wavelength > 1mm and
optical parametric oscillators (OPOs) pumped at 1064nm as well as
quasi-phase-matched (QPM) devices. With preferable E-O coefficients,
LiNbO3 crystal has become the most commonly used material for Q-switches
and phase modulators, waveguide substrate, and surface acoustic wave
(SAW) wafers, etc.
Contact maintenant
High
temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal
with a large birefringence over the broad transparent range from 189 nm
to 3500 nm. The physical, chemical, thermal, and optical properties of
alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal.
However, there is no second order nonlinear effect in alpha-BBO crystal
due to the centrosymmetry in its crystal structure and thus it has no
use for second order nonlinear optical processes.
Contact maintenant
Yb:YAG's advantage is a wide pump band and an excellent emission
cross section. It is ideal for diode pumping. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output. High efficiency means a
relatively small dimension Yb:YAG laser crystal will produce high power
output. Based on the YAG host crystal, Yb:YAG can be quickly integrated
into the laser design process.
Contact maintenant
Periodically poled lithium niobate (PPLN) crystal and MgO: PPLN are a new kind of nonlinear optical crystal, which can realize high-efficiency frequency conversion such as frequency doubling, sum frequency, and optical parametric oscillation in wave brand from visible to mid-infrared. When doped with 5% MgO, the photodamage threshold and photorefractive threshold of PPLN are greatly increased (compared to that of pure PPLN), and their performance is more stable and suitable for room temperature use.
Contact maintenant
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) and KD*P
(Potassium Dideuterium Phosphate) are useful commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. They are also excellent
electro-optic (EO) crystals with high electro-optic coefficients, widely
used as electro-optical modulators and Pockels cells for Q-switched
lasers.
Contact maintenant
High temperature phase of α-BBO Crystal (BaB2O4)
is one of the excellent birefringent crystals. It is characterized by
large birefringent coefficient and wide transmission window ranged from
189nm to 3500nm. Due to its high chemical stability and medium hardness,
α-BBO is fabricated easily into many kinds of optical components.The
physical, chemical, thermal and optical properties of α-BBO are similar
to those of β-BBO.
Contact maintenant
Diffusion bonded crystal consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact maintenant
Diffusion Bonded Crystal (DBC) is a crystalline solid used
in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact maintenant
Main SpecificationsDimensionsLength50 ~ 120 mm (± 0.5 mm)Diameter3 ~ 6 mm (+0.00, -0.05 mm)Er Concentration~ 50 atm%Orientation[111] (± 1°)Distinction Ratio≥ 25 dBWavefront Distortionλ/8 per inch @ 1064 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2940 nm)
Contact maintenant
Potassium
Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP)
are among the most widely-used commercial NLO materials, characterized
by good UV transmission, high damage threshold, and high birefringence,
though their NLO coefficients are relatively low. They are usually used
for doubling, tripling or quadrupling of a Nd:YAG laser (at constant
temperature).
Contact maintenant
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal
produces linear changes in the birefringence of the crystal (in contrast
to the Kerr Effect, which is quadratic with E).
Pockels cells are essential components in various optical devices such
as Q-switches for lasers, free space electro-optical modulators, free
space switches. WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact maintenant
KTP Crystal Features• Large Nonlinear Optical (NLO) Coefficients• Wide Phase-matching Acceptance Angle• Broad Temperature and Spectral Bandwidth• High Electro-Optic (E-O) Coefficients
• Nonhygroscopic, Good Chemical and Mechanical Properties
• Relatively High Damage Threshold for E-O modulatorKTP Crystal Applications1. SHG of Nd:Laser - KTP is the most commonly used material for
frequency doubling of Nd:YAG and other Nd-doped lasers, particularly
when the power density is at a low or medium level.
Contact maintenant
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact maintenant
Polarizing Beamsplitters (PBS) are
designed to split light by polarization state rather than
by wavelength or intensity. PBS are often used in
semiconductor or photonics instrumentation to transmit p-polarized light
while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence
with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a
range of configurations including plate, cube, or lateral displacement.
Contact maintenant
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) crystal is an excellent material for passive Q-switching of Nd:YAG and other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact maintenant
The improved hydrothermal-grown KTP crystal overcomes the common
electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage
threshold, large effective electro-optic coefficients and lower
half-wave voltage. KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated
double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact maintenant
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact maintenant
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact maintenant
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are
particularly well suited for high laser powers and UV wavelengths.
Contact maintenant
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact maintenant
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact maintenant