RTP crystal is widely used for Electro-Optic applications whenever low
switching voltages are required. e.g. in laser Q-switching system with high frequency repetition, high power and narrow pulse width. RTP E-O devices are not only used in laser micromachining and laser ranging, but also in major scientific exploration projects due to their excellent comprehensive performance.As RTP is transparent from 400nm to 3.5µm, it can be used in multiple
types of laser such as Er:YAG laser at 2.94µm with fairly good
efficiency.
Contact maintenant
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It
has advantages of higher damage threshold (about 1.8 times that of
KTP), high resistivity, high repetition rate, no hygroscopic or
piezoelectric effect.
Contact maintenant
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Contact maintenant
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Contact maintenant
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Contact maintenant
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable
us to offer our customers complete, plug-and-play RTP Pockels cell
assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Contact maintenant
RTP possesses a large electro-optic impact for light propagating along either the x or y direction (electric powered along z). It functions right optical transparency from around 400nm to over 4µm. RTP offers a high resistance to optical damage with energy ~1Gw/cm2 for 1ns pulses at 1064nm. It is largely total lack of piezo-electric resonances at 200kHz and probable beyond. The primary distinction between RTP and BBO whilst used for Q-switching pertains to the common power degree at which the Q-switch is capable of be used practically.
Contact maintenant
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD*P, DKDP) crystals are among the most widley used nonlinear crystals. Both of these crystals are routinely used for the doubling, triplingand quadrupling of Nd:YAG lasers at room temperatures.
Contact maintenant
Potassium
Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP)
are among the most widely-used commercial NLO materials, characterized
by good UV transmission, high damage threshold, and high birefringence,
though their NLO coefficients are relatively low. They are usually used
for doubling, tripling or quadrupling of a Nd:YAG laser (at constant
temperature).
Contact maintenant
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) and KD*P
(Potassium Dideuterium Phosphate) are useful commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. They are also excellent
electro-optic (EO) crystals with high electro-optic coefficients, widely
used as electro-optical modulators and Pockels cells for Q-switched
lasers.
Contact maintenant
Potassium dihydrogen phosphate KH2PO4 (KDP) is a
transparent dielectric material best known for its nonlinear optical and
electro-optical properties. Because of its nonlinear
optical properties, it has been incorporated into various laser systems
for harmonic generation and optoelectrical switching.
Contact maintenant
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. KDP are also excellent
electro-optic (EO) crystals with high EO coefficients, thus popularly
used as EO modulators and Pockels cells for Q-switched
lasers.
Contact maintenant
Potassium dideuterium phosphate DKDP (KD * P) crystal has low optical loss, high extinction ratio, and excellent electro-optical performance. DKDP Pockels cells are made by using the longitudinal effect of DKDP crystals. The modulation effect is stable and the pulse width is small.
Contact maintenant
E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from
390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high
electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP
(D>99% – WISOPTIC) is necessary to reach effective electro-optical
response.
Contact maintenant
KTP Pockels are based on hydrothermal-grown high resistivity KTP crystals overcomes the common
electrochromism damage of flux-grown KTP. Hydrothermal-grown KTP crystals have better optical homogeneity and higher damage threshold
comparing to RTP crystals. This KTP crystal has large effective electro-optic coefficients and lower
half-wave voltage. The Q-switch is built utilizing thermally compensated
double crystal designs.
Contact maintenant
Thin Film Polarizers are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Polarizer is used to change un-polarized beam into linear polarized beam.
Contact maintenant
WISOPTIC provides sorts of quadric Aspheric Lens and high order Aspheric Lens, as well as infrared Aspheric Lens (ZnS, ZnSe, Ge, etc. ).WISOPTIC Capabilities - Aspheric Lens Medium PrecisionHigh PrecisionAperture5~200 mm20~1000 mmSurface Quality [S/D]< 40/20 [S/D]< 40/20 [S/D]Surface IrregularityPV< 0.5~5 µm RMS< λ/50 @ 632.8 nmAspheric Surface Type Quadric, High order Quadric, High order Manufacture Capability300 pcs/month20 pcs/year
Contact maintenant
An aspherical lens features a non-spherical but rotationally symmetric
shape with a curvature radius that changes at various points between the
center and the edge. Although producing this type of lens is difficult,
when manufactured properly, it offers greater functionality than a
comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of
curvature across the entire lens. In contrast, aspherical lenses have a
more complicated surface with a gradually changing curvature from center
to edge.
Contact maintenant
Nominally pure stoichiometric LiNbO3
shows lower photorefractive damage resistance than congruent crystal;
however, stoichiometric crystals doped with MgO of more than 1.8 mol.
Contact maintenant
Items Specifications Material CTH:YAG (Cr, Tm, Ho - doped YAG)Doping ExtentCr: 0.3~1.2 at%; Tm: 5~6 at%; Ho: 0.3~0.4 at% Crystalline Direction[111] (± 5°)DimensionsDia 3~6 (+0/-0.05) mm × 50~120 (±0.5) mm (customized)Extinction Ratio> 25 dBSingle Pass WFD < λ/8 @633 nm over central areaSurface Quality 10-5 [s-d] per MIL-O-13830BClear Aperture> 90% over central areaEnd-surface Parallelism< 20"Perpendicularity< 5'End-surface Flatness< λ/8 @633 nmChamfer0.2 ± 0.05 mm × 45°Laser CoatingAR/AR @ 209
Contact maintenant
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact maintenant
Pure LiNbO3 (LN) is a good candidate for various optical devices, but
has a major disadvantage due to its low threshold optical damage. MgO:LN (congruent
compositions) is one of the possible solutions to deal with this
problem. MgO doping has played an important role in LN and shown an
increased threshold laser beam strength by 100 times. An interesting
point is that every physical property of MgO:LN (e.g.
Contact maintenant
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate
materials, e.g. UVFS
and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm.
Also we offer uncoated rectangular windows with aperture from 15 x 20 to
50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact maintenant
Polarization is an important characteristic of light. Polarizers are key optical elements for controlling your polarization,
transmitting a desired polarization state while reflecting, absorbing or
deviating the rest. There is a wide variety of polarizer designs, each
with its own advantages and disadvantages.
Contact maintenant