Corner cube prisms are optics which act as corner reflectors.
The basic operation principle is that there are internal reflections on
three mutually orthogonal prism surfaces, producing a direction of a
reflected beam which is nominally parallel to the direction of the
incident beam – with the accuracy limited only by the accuracy of the
surface orientation of the prism.
Precision prisms can offer excellent parallelism of incoming and
reflecting beams.
It is usually specified as an angular deviation, e.g.
Contact maintenant
Polarizer is a kind of optical filter
where the light transmission depends strongly on the polarization
state.
Normally, light with linear polarization in a certain direction is
passed, and light polarized in an orthogonal direction is either
absorbed or propagated to a different direction.For other directions of linear polarization with an angle θ against the“passing”direction, the transmission exhibits a cos2 θ
dependence.
That can be understood by considering that linear polarization state as a
linear superposition of the "passing”and the“blocked”state.Most polarizers act
Contact maintenant
Right angle prisms
are generally used to bend image paths or redirect light at 90°. This
produces a left handed image and depending on the orientation of the
prism, the image may be inverted or reverted.
Contact maintenant
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect
but are not parallel to each other. The most important parameters of a
prism are the angle and material. Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light
and for determining the identity and structure of materials that emit or
absorb light. An optical prism’s design determines how light interacts with it.
Contact maintenant
Phase retardation plates, or waveplates, are polarizing
optics used to manipulate the polarization state of the transmitting
light without attenuating, deviating, or displacing the light. The
working principle of the plate is to utilize
the birefringence of certain materials which separates the incident
light beam into two beams along two orthogonal optical axes within
the medium. The phase retardation between the two beams of the incident light contributes to changes in the
polarization state.
Contact maintenant
An aspherical lens features a non-spherical but rotationally symmetric
shape with a curvature radius that changes at various points between the
center and the edge. Although producing this type of lens is difficult,
when manufactured properly, it offers greater functionality than a
comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of
curvature across the entire lens. In contrast, aspherical lenses have a
more complicated surface with a gradually changing curvature from center
to edge.
Contact maintenant
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate
materials, e.g. UVFS
and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm.
Also we offer uncoated rectangular windows with aperture from 15 x 20 to
50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contact maintenant
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact maintenant
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are
particularly well suited for high laser powers and UV wavelengths.
Contact maintenant
Lithium
Niobate (LiNbO3) is widely used in fiber communication devices as birefringent
crystal and used as electro-optic modulator and Q-switch
for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical
polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing
optics. The transverse modulation is mostly employed for
LiNbO3 crystal.
Contact maintenant
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD*P, DKDP) crystals are among the most widley used nonlinear crystals. Both of these crystals are routinely used for the doubling, triplingand quadrupling of Nd:YAG lasers at room temperatures.
Contact maintenant
Potassium dideuterium phosphate DKDP (KD * P) crystal has low optical loss, high extinction ratio, and excellent electro-optical performance. DKDP Pockels cells are made by using the longitudinal effect of DKDP crystals. The modulation effect is stable and the pulse width is small.
Contact maintenant
WISOPTIC offers both plate and cube PBS for a variety of wavelength ranges and power handling requirements.
Contact maintenant
BBO is an effective NLO crystal for the SHG, THG, or FHG of Nd:YAG lasers, and the first-rate NLO crystal for the FHG at 213nm. Conversion efficiencies of more than 70% for SHG, 60% for THG and 50% for 4HG, and 200mw output at 213 nm (5HG) have been obtained through using Wisoptic's BBO, respectively.BBO is also an efficient crystal for the intracavity SHG of excessive energy Nd:YAG lasers. for the intracavity SHG of an acousto-optic Q-switched Nd:YAG laser, greater than 15 w average power at 532 nm generated via an AR-coated BBO crystal produced by Wisoptic.
Contact maintenant
Dye Laser Handpiece are devices that screw onto the end of the laser's arm and convert the energy that the laser produces into different, new wavelengths of light.The two most common dye handpiece wavelengths are 585 nm and 650 nm,
which attach to Q-switched Nd:YAG lasers. For these wavelengths to be
produced, the Nd:YAG's 1064 nm wavelength is frequency-doubled to
produce the 532 nm wavelength, which is then converted by the dye
handpieces to produce either 585 nm or 650 nm. WISOPTIC use in-house made dye laser cells to make dye laser handpieces.
Contact maintenant
Dye laser headpiece made from WISOPTIC has very high conversion efficiency: 65%~75% for 532/585nm, 45%~55% for 532/650nm.
Contact maintenant
WISOPTIC use in-house made dye laser cells to make dye laser handpieces. Pure input beam at 532nm is required to produce output beams of 585nm/595nm (energy over 100 mJ) and 650nm/660nm (energy over 80 mJ).
Contact maintenant
Solid Laser DyesThere is some work on dye lasers based on solid media, e.g.
Contact maintenant
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers. Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes.
But the dye molecules in the polymer matrix might degradate in a limited time
by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Contact maintenant
The high
damage threshold makes BBO cells more attractive than others in the high
power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in
transverse mode, which makes the cells very compact, and the half-wave
voltage designable. BBO Pockels cells are also suitable for systems with
high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact maintenant
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact maintenant
Ceramic Laser Reflector (Ceramic Laser Cavity) works particularly well in Ruby,
Nd:YAG, or Alexendrite laser pumping chambers and can be a highly cost effective
alternative to metal coated reflectors. Compared to metal reflectors, ceramic units offer higher reflectivity
and therefore enhanced laser power. Surfaces can be sealed and coated
with a solarization-resistant glaze to give high bulk reflectivity.
Contact maintenant
The Ceramic Laser Reflectors are high reflectance cavities used in solid state and CO2 laser systems. They are built either as a one-piece or two-piece system based on customer requirement.Ceramic cavities produce diffuse reflectance, which offers a very uniform beam profile. This diffuse reflectance also distributes light and consequently decreases hot spots in the pumped medium. These completely dense materials (e.g. Al2O3) exhibit higher strength and scratch resistance than traditional polymeric and thermoplastic materials.
Contact maintenant
Main SpecificationsDimensionsLength50 ~ 120 mm (± 0.5 mm)Diameter3 ~ 6 mm (+0.00, -0.05 mm)Er Concentration~ 50 atm%Orientation[111] (± 1°)Distinction Ratio≥ 25 dBWavefront Distortionλ/8 per inch @ 1064 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2940 nm)
Contact maintenant