KDP Crystal-manufacture,factory,supplier from China

(Total 24 Products for KDP Crystal)
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. KDP are also excellent electro-optic (EO) crystals with high EO coefficients, thus popularly used as EO modulators and Pockels cells for Q-switched lasers.
Contact maintenant
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contact maintenant
Potassium dihydrogen phosphate KH2PO4 (KDP) is a transparent dielectric material best known for its nonlinear optical and electro-optical properties. Because of its nonlinear optical properties, it has been incorporated into various laser systems for harmonic generation and optoelectrical switching.
Contact maintenant
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact maintenant
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact maintenant
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD*P, DKDP) crystals are among the most widley used nonlinear crystals. Both of these crystals are routinely used for the doubling, triplingand quadrupling of Nd:YAG lasers at room temperatures.
Contact maintenant
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact maintenant
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP) are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling or quadrupling of a Nd:YAG laser (at constant temperature).
Contact maintenant
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate)  and KD*P (Potassium Dideuterium Phosphate) are useful commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. They are also excellent electro-optic (EO) crystals with high electro-optic coefficients, widely used as electro-optical modulators and Pockels cells for Q-switched lasers.
Contact maintenant
The periodic polarized KTP (PPKTP) is a novel nonlinear optical material that can be customized to achieve all of the nonlinear applications required in the entire KTP crystal transmission band, without the phase matching limitations of conventional KTP. Moreover, the effective nonlinear coefficient of PPKTP is about 3 times higher than that of conventional KTP. In the nonlinear application of conventional KTP, the crystal must have a single domain structure, but PPKTP crystal has an artificially induced periodic domain structure.
Contact maintenant
Tm:YAP crystal is one of the most important crystals for LD pumping 2μm laser. The anisotropic structure of Tm:YAP produces anisotropic emission cross section. Tm:YAP crystals with different orientations have different output wavelengths and operating forms for different functions. Compared with the physical and chemical properties of Tm:YAG, the 795nm pump absorption band of Tm:YAP matches the emission wavelength of commonly used high-power AlGaAs diodes better.
Contact maintenant
Diffusion bonded crystal consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Contact maintenant
KTA (Potassium Titanyle Arsenate, KTiOAsO4 ) is a nonlinear optical crystal similar to KTP in which atom P is replaced by As. It has good non-linear optical and electro-optical properties, e.g.
Contact maintenant
KTA (Potassium Titanyle Arsenate, KTiOAsO4 ) is a nonlinear optical crystal similar to KTP in which atom P is replaced by As. It has good non-linear optical and electro-optical properties, e.g.
Contact maintenant
Beta-BBO crystal is an important nonlinear optical crystal with combination of unique optical properties, such as broad transmission and phase matching ranges, large nonlinear coefficient, high damage threshold and excellent optical homogeneity. The β-BBO crystal is an efficient material for the second, third and fourth harmonic generation of Nd:YAG lasers, and the best NLO material for the fifth harmonic generation at 213 nm.
Contact maintenant
Lithium  Niobate (LN) crystal has excellent electro-optic, acousto-optic,  piezoelectric and nonlinear properties. More and more attention has been paid on its application in military technology. LN crystal has large nonlinear optical coefficient and can easily achieve non-critical phase matching. As an E-O material, LN crystal has been used as an important optical waveguide material.
Contact maintenant
Nd:YLF is an excellent crystal that is very suitable for working in mode-locked mode to obtain short pulse laser. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold. Nd:YLF crystal has obtained important applications in inertial confinement laser fusion research projects.
Contact maintenant
Compared to more commonly used KTP crystal, KTA crystal has larger non-linear optical and electro-optical coefficients. KTA has the added benefit of significantly reduced absorption in the 2 to 5 μm region.  It has found more and more applications in second harmonic generation (SHG), sum and difference frequency generation (SFG)/(DFG), optical parametric oscillation/ amplification (OPO/OPA), and electro-optical Q-switching. WISOPTIC do in-house growing and processing KTA crystal with high optical quality and various options of dimensional and coating specifications.
Contact maintenant
Compared with congruent LN (cLN) crysal, the electro-optic coefficient, nonlinear optical coefficient, periodic polarization reversal voltage and applied photorefractive properties of stoichiometric LN (sLN) crystal are greatly improved. With such excellent physical properties and wide application prospects, sLN crystal has rapidly become a competitive optoelectronic material.sLN crystals are expected to be thermodynamically stable up to their melting temperature at 1170°C, while keeping a largerelectrical resistivity than cLN crystals by one order of magnitude at any temperature.
Contact maintenant
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Contact maintenant
LN Crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.As one of the most thoroughly characterized nonlinear optical materials, LiNbO3 is suitable for a variety of frequency conversion applications. For example, it is widely used as frequency doublers for wavelength >1 μm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices.
Contact maintenant
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact maintenant
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is the most efficient laser crystal for diode-pumped solid-state lasers. Its good physical, optical and mechanical properties make Nd:YVO4 an excellent crystal for high power, stable and cost-effective diode-pumped solid-state lasers, especially for lasers with low or middle power density. Nd:YVO4  is a good choice for highly polarized output at 1342 nm, as the emission line is much stronger than those of its alternatives.
Contact maintenant
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Contact maintenant
Relate News
2.1 Manipulating and understanding laser damage precursors through material growth processesCombined with the statistical model, information such as precursor density and threshold distribution can be extracted from the damage probability curve, which indirectly reflects the information of the precursor. The analysis shows that the KDP crystal (www.wisoptic.com) mainly contains a precursor with a threshold distribution.
The variant of refractive indices with temperature is an essential crystal parameter in nonlinear optics. it is well known that the wavelength at which 90° phase-matched 2nd-harmonic era happens depends on temperature. the variation of this wavelength with temperature can be predicted with a understanding of the variant of the refractive indices with temperature and is cited on this paper because the tuning price.
MEASUREMENT TECHNIQUEThe measurement technique consists primarily of a measurement of the variation of the angle of deviation with temperature. The crystals to be measured were 60-60-60° prisms approximately 15 mm on a side. They were attached to a temperature-controlled mount in a vacuum chamber. The temperature could be varied by varying the temperature of a liquid bath above the mount. Temperature was measured by thermocouples attached above and below the crystal. The crystal temperature was assumed to be the average of the two temperatures.
WISOPTIC is using its newly-set coating machine to do in-house vacuum coatings on crystals and optical components.With our own coating machine and technique, we can provide customers products with excellent quality, e.g. higher surface quality, higher transmittance, and higher LIDT etc.Sorts of dielectric coatings (e.g. AR, HR, PR) are available for crystals (KDP/DKDP, KTP, RTP, BBO, LBO, LN, Nd:YAG, etc) and optical components (laser windows, mirrors, PBS, etc).
3 The main application of lithium tantalate crystal3.2 OscillatorAn oscillator is an energy conversion device that converts DC power into AC power with a certain frequency. This circuit is called an oscillation circuit. The oscillator achieves free oscillation through the mutual conversion between magnetic field energy and electric field energy.Oscillators are divided into RC oscillators, LC oscillators and crystal oscillators. The crystal oscillator has a piezoelectric effect, and the crystal will deform when a voltage is applied to the two poles of the wafer.
04 Theoretical study of thermal properties The above experiment shows that the BBO crystal (www.wisoptic.com) generates serious heat in the process of frequency quadrupling. It is known that the energy band gap of the BBO crystal is 6.56 eV, while the single photon energy of 266 nm and 532 nm lasers is 4.66 eV and 2.33 eV respectively. Theoretically, the crystal does not have single photon absorption of 266 nm and 532 nm lasers.
Conclusion Lithium tantalate material has a large pyroelectric coefficient, high Curie temperature, small dielectric loss factor, low heat melt per unit volume, small relative dielectric constant, and stable performance. It is a good ferroelectric and piezoelectric material. It also has extraordinary properties. Because of its linear optical properties, lithium tantalate (LT crystal, www.wisoptic.com) has gradually become a popular material used in communications, electronics and other fields.
2. Fabrication of Lithium Tantalate Crystal2.1 Fabrication of same composition lithium tantalate crystalThe same composition Lithium tantalate (CLT) crystals are often fabricated by mixing high-purity tantalum pentoxide with high-purity lithium carbonate at a stoichiometric ratio of 0.95:1 (molar ratio), and are prepared by the crucible pulling method. The quality of LiTaO3 crystal (www.wisoptic.com) is generally affected by factors such as raw material ratio, pulling speed, seed crystal quality, crucible shape and type.
2.2 Fabrication of lithium tantalate crystal with near stoichiometric ratioThe preparation of near-stoichiometric lithium tantalate (NSLT) crystals is difficult. The current methods mainly include: the double crucible method, the flux pulling method, the float zone method and the gas phase exchange equilibrium method. 2.2.1 The double crucible methodIn the double crucible method, the melt material needs to be continuously added to the crucible during the crystal preparation process to keep the melt composition unchanged.
1.2 Near-stoichiometric Lithium Tantalate Crystal Most of the lithium tantalate crystals currently used are grown from melts with the same composition ratio, which is generally called the same composition lithium tantalate (CLT). However, large number of defects affect the physical properties of the CLT crystal, so researchers have conducted study on near-stoichiometric lithium tantalate (NSLT) with less material defects and better physical properties.
x

Soumis avec succès

nous vous contacterons dès que possible

près