Eye-safe Wavelength Range-manufacture,factory,supplier from China

(Total 24 Products for Eye-safe Wavelength Range)
Highly doped (50%) Erbium YAG is a well-known laser source for producing 2940nm emission, commonly used in medical (e.g. cosmetic skin resurfacing), and dental (e.g. oral surgery) applications due to the strong water and hydroxapatite absorption at this wavelength.Low doped (< 1%) Erbium YAG hase been studied as an efficient means to generate high power and high energy 1.6 micron 'eye-safe' laser emission thru 2 level resonant pumping schemes.
Contact maintenant
KTP (KTiOPO4 ) is one of the most commonly used nonlinear optical materials which offers a range of unique features: high optical quality, broad transparency range, wide acceptance angle, small walk-off angle, and type I and II non-critical phase-matching (NCPM) in a wide wavelength range.
Contact maintenant
Optical filter is usually a component with a wavelength-dependent transmittance or reflectance. It's used to selectively transmit or reject a wavelength or range of wavelengths.  Filters with particularly weak wavelength dependence of the transmittance are called neutral density filters. The general applications of optical filters include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths.
Contact maintenant
WISOPTIC offers both plate and cube PBS for a variety of wavelength ranges and power handling requirements.
Contact maintenant
Optical filters are used to selectively transmit or reject a wavelength or range of wavelengths. Their applications include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Optical filters are widely used in light system of life science, imaging, industrial, or defense industries. For example, Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths. Notch filters reject a portion of the spectrum, while transmitting all other wavelengths.
Contact maintenant
Readily available stock of periodically poled MgO:LN crystals can be provided on short timescales to rapidly meet your application needs, providing the capability to efficiently generate laser light in a wide range of wavelengths.MgO:PPLN SHG crystals are available for a wide range of common pump laser wavelengths from 976 nm to 2100 nm, allowing generation of light between 488nm and 1050nm.MgO:PPLN OPO are available for 515nm and 1064nm pump sources, allowing continuous wavelength generation in a selection of ranges in the visible and IR.MgO: PPLN DFG Crystals are available for
Contact maintenant
When classified by coatings, Optical Mirrors consist of dielectric mirrors and metallic mirrors. Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7). WISOPTIC offer dielectric laser mirrors for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum. Metallic mirrors are widely used due to a moderate level of reflection over a very broad spectral range.
Contact maintenant
KTP (KTiOPO4) is one of the most commonly used nonlinear optical materials. For example, it’s regularly used for frequency doubling of Nd:YAG lasers and other Nd-doped lasers, particularly at low or medium-power density. KTP is also widely used as OPO, EOM, optical wave-guide material, and in directional couplers.KTP exhibits a high optical quality, broad transparency range, wide acceptance angle, small walk-off angle, and type I and II non-critical phase-matching (NCPM) in a wide wavelength range.
Contact maintenant
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  crystal is an excellent material for passive Q-switching of Nd:YAG and  other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact maintenant
Polarizing Beamsplitters (PBS) are designed to split light by polarization state rather than by wavelength or intensity. PBS are often used in semiconductor or photonics instrumentation to transmit p-polarized light while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a range of configurations including plate, cube, or lateral displacement.
Contact maintenant
Optical Prisms are widely used to redirect light at a designated angle. They are ideal for ray deviation, or for adjusting the orientation of an image. An optical prism’s design determines how light interacts with it. When light enters an optical prism, it either reflects off an individual surface or several surfaces before exiting, or is refracted as it travels through the substrate.  WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact maintenant
A corner cube (or cube corner), also known as a retroreflector, is an optical component with the unique ability to return an incoming beam of light directly towards its point of origin regardless of the beam's angle of entry. This property makes this prism type ideal for a wide variety of applications, such as laser resonator cavities, land surveying, ground based range-finding, satellite communications and space vehicle docking.Wisoptic offer a wide variety of retroreflectors at competitive prices and lead times, and are able to accommodate the most demanding requirements.
Contact maintenant
YLF is birefringent, which eliminates thermally induced depolarization loss. The gain and the emission wavelength of Nd:YLF are polarization dependent: there is the stronger 1047nm ray for π polarization, and a weaker one at 1053nm for σ polarization. Nd:YLF provides alternative to the more common Nd:YAG laser crystal for near IR operation.
Contact maintenant
Wisoptic’s optical mirrors are available for use with light in the UV, VIS, and IR spectral regions. Optical mirrors with a metallic coating have high reflectivity over the widest spectral region, whereas mirrors with a broadband dielectric coating have a narrower spectral range of operation; the average reflectivity throughout the specified region is greater than 99%.
Contact maintenant
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect.
Contact maintenant
There are four main types of prisms based on the function: dispersion prism, deflection or reflection prism, rotating prism and offset prism.  Deflection, offset and rotating prisms are commonly used in imaging applications; diffusion prisms are designed for dispersive light sources and are not suitable for any application that requires high quality images.WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contact maintenant
Dye Laser Handpiece are devices that screw onto the end of the laser's arm and convert the energy that the laser produces into different, new wavelengths of light.The two most common dye handpiece wavelengths are 585 nm and 650 nm, which attach to Q-switched Nd:YAG lasers. For these wavelengths to be produced, the Nd:YAG's 1064 nm wavelength is frequency-doubled to produce the 532 nm wavelength, which is then converted by the dye handpieces to produce either 585 nm or 650 nm. WISOPTIC use in-house made dye laser cells to make dye laser handpieces.
Contact maintenant
Erbium doped Yttrium Aluminum Garnet (Er:Y3Al5O12 or Er:YAG) combine various output wavelength with the superior thermal and optical properties of YAG. The emission wavelength of Er:YAG with doping concentration of 50% is 2940nm, which is at the position of water absorption peak and can be strongly absorbed by water molecules. Therefore, Er:YAG laser is widely used in plastic surgery and dentistry.
Contact maintenant
High temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes.
Contact maintenant
Front surface mirrors are coated with aluminum or dielectrics for maximum reflection. WISOPTIC provides both kinds of front surface mirrors: metal coated mirror and dielectric coated mirror.Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7).  Dielectric laser mirrors are used for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum.
Contact maintenant
Barium Borate exists in three major crystalline forms: alpha, beta, and gamma. The low-temperature beta phase converts into the alpha phase upon heating to 925 °C. β-BBO differs from α-BBO by the positions of the barium ions within the crystal. Both phases are birefringent, however α-BBO has centric symmetry and thus does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact maintenant
LiNbO3 crystal is a low cost photoelectric material with good mechanical and physical properties as well as high optical homogeneity. It has been widely used as frequency doublers for wavelength > 1mm and optical parametric oscillators (OPOs) pumped at 1064nm as well as quasi-phase-matched (QPM) devices. With preferable E-O coefficients, LiNbO3 crystal has become the most commonly used material for Q-switches and phase modulators, waveguide substrate, and surface acoustic wave (SAW) wafers, etc.
Contact maintenant
Tm:YAP crystal is one of the most important crystals for LD pumping 2μm laser. The anisotropic structure of Tm:YAP produces anisotropic emission cross section. Tm:YAP crystals with different orientations have different output wavelengths and operating forms for different functions. Compared with the physical and chemical properties of Tm:YAG, the 795nm pump absorption band of Tm:YAP matches the emission wavelength of commonly used high-power AlGaAs diodes better.
Contact maintenant
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact maintenant
Relate News
4. Experimental Result and Analysis4.1 Comparison of frequency doubling efficiency of CPPLN and LBOThe CPPLN crystal (www.wisoptic.com) we designed has the maximum frequency doubling efficiency in the working range between 15-40℃, so the subsequent analysis will be carried out around this range. In the same fundamental frequency light power gradient, the effect of temperature change on the frequency doubling efficiency of CPPLN is shown in Figure 4(a).
The variant of refractive indices with temperature is an essential crystal parameter in nonlinear optics. it is well known that the wavelength at which 90° phase-matched 2nd-harmonic era happens depends on temperature. the variation of this wavelength with temperature can be predicted with a understanding of the variant of the refractive indices with temperature and is cited on this paper because the tuning price.
1. Research status and future development trend of mid-infrared (2-5 μm) laser crystalsAccording to the order of laser wavelength from short to long, the main material that have achieved laser output (including some optical fibers and transparent ceramics for comparison) are listed in Table 1. Among them, the highest continuous laser output power of laser crystals corresponding to different wave bands is shown in Figure 2. The laser output power of activated ions shows an obvious attenuation trend as the wavelength expands to the mid-infrared direction.
1.5  ~ 4 μm laser crystals doped with Fe2+ Compared with Cr:ZnSe, Fe:ZnSe has a smaller band gap and is prone to produce thermally induced multi-phonon quenching, so both laser power and efficiency are low. In 1999, Adams et al. realized the tunable wavelength of 3.98-4.54 μm at low temperature for the first time in Fe:ZnSe, and obtained laser output with slope efficiency of 8.2%. Pumped by Er3+ doped or Cr:ZnSe @ 2.7 μm laser, 4.0 μm wavelength and 1 W level continuous laser output have been obtained at room temperature. In 2020, Pushkin et al.
1. 2   ~ 2.3 μm laser crystals doped with Tm3+ Compared with the 2 μm band (3F4 → 3H6) of Tm3+, the 2.3 μm laser operation based on the 3H4 → 3H5 transition of the Tm3+ doped laser medium has the following advantages: (1) ~790 nm LD is directly pumped to the upper energy level of the laser. Tm3+ has a strong absorption around 790 nm (directly corresponding to the 3H4 → 3H6 transition), which can match the emission wavelength of the current mature commercial AlGaAs LD, so as to realize high-performance LD pumping all-solid-state high-efficiency 2.3 μm laser operation.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterThere are many studies on filters in SAW devices. Wave filters have the advantages of low transmission loss, high reliability, great manufacturing flexibility, analog/digital compatibility, excellent frequency selection characteristics, and can realize a variety of complex functions.
Since defects induce laser damage, and defects are randomly distributed in optical components, the detection and evaluation of laser damage performance of optical components has become another important research content. The standard for laser damage threshold testing was established in the 1990s and has been continuously improved with the development of laser technology and optical materials.
Laser damage induced by microscopic defects in optical componentsAccording to the above numerical analysis results, it can be seen that cracks may be generated around the nodule seed and propagate along the radial direction.
Nanoscale laser damage precursorsDifferent from microscopic defects, defects are called precursors here. Defects generally refer to observable microstructures that are different from the characteristics of the surrounding matrix materials, and are often observed by optical microscopy. The precursors mentioned in this article generally cannot be directly observed by optical methods, and there is no obvious difference in characteristics from the surrounding matrix materials.
3. Experimental EquipmentThe overall device diagram of the frequency doubling experiment is shown in Figure 3(a). The 1064nm continuous light passes through a half-wave plate and is directly focused into the CPPLN crystal by a lens. The generated frequency doubling light passes through a 532nm transparent filter and is received and detected by a power meter. The self-built LD-pumped Nd:YVO4 continuous laser used in the experiment can reach a maximum output power of 22.53W.
x

Soumis avec succès

nous vous contacterons dès que possible

près