Items Specifications Material CTH:YAG (Cr, Tm, Ho - doped YAG)Doping ExtentCr: 0.3~1.2 at%; Tm: 5~6 at%; Ho: 0.3~0.4 at% Crystalline Direction[111] (± 5°)DimensionsDia 3~6 (+0/-0.05) mm × 50~120 (±0.5) mm (customized)Extinction Ratio> 25 dBSingle Pass WFD < λ/8 @633 nm over central areaSurface Quality 10-5 [s-d] per MIL-O-13830BClear Aperture> 90% over central areaEnd-surface Parallelism< 20"Perpendicularity< 5'End-surface Flatness< λ/8 @633 nmChamfer0.2 ± 0.05 mm × 45°Laser CoatingAR/AR @ 209
Contact maintenant
Nd:YVO4 is the most efficient laser crystal for diode-pumped solid-state lasers. The good physical, optical and mechanical properties make Nd:YVO4 an excellent material for high power, stable and cost-effective diode-pumped solid-state lasers.
Contact maintenant
Alumina Ceramic Reflectors are designed primarily for use in pumping chambers for many diverse laser
systems, e.g. YAG lasers.
Contact maintenant
Ceramic Laser Reflector (Ceramic Laser Cavity) works particularly well in Ruby,
Nd:YAG, or Alexendrite laser pumping chambers and can be a highly cost effective
alternative to metal coated reflectors. Compared to metal reflectors, ceramic units offer higher reflectivity
and therefore enhanced laser power. Surfaces can be sealed and coated
with a solarization-resistant glaze to give high bulk reflectivity.
Contact maintenant
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal
produces linear changes in the birefringence of the crystal (in contrast
to the Kerr Effect, which is quadratic with E).
Pockels cells are essential components in various optical devices such
as Q-switches for lasers, free space electro-optical modulators, free
space switches. WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact maintenant
Cr:YAG or Cr4+:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) is an excellent and widely used electro-optic material for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength 800~1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is popularly used to substitute for many traditional materials such as LiF, organic dyes and color centers.
Contact maintenant
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical
emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output.
Contact maintenant
Main SpecificationsDimensionsLength50 ~ 120 mm (± 0.5 mm)Diameter3 ~ 6 mm (+0.00, -0.05 mm)Er Concentration~ 50 atm%Orientation[111] (± 1°)Distinction Ratio≥ 25 dBWavefront Distortionλ/8 per inch @ 1064 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2940 nm)
Contact maintenant
Main SpecificationsDimensionsAperture2×2 ~ 14×14 mm2Length0.1 - 12 mmOrientation[100] or [111] (±1°)Doping Concentration0.5 ~ 3.0 mol%Initial Absorption Coefficient0.5 ~ 6.0 cm-1 @ 1064 nmInitial Transmission5% ~ 95% Surface Flatness< λ/8 @ 633 nmEnd Surface Parallelism< 30”Chamfer≤ 0.1 mm × 45°Surface Quality20-10 [s-d] (MIL-PRF-13830B)CoatingAR (R<0.2% @1064nm) or according to customer’s requestLIDT≥ 500 MW/cm2The pulse width of Cr4+:YAG passively Q-switched lasers could be as short as 5 ns for diode pumped Nd:YAG lasers and the repetition could be as high a
Contact maintenant
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect
but are not parallel to each other. The most important parameters of a
prism are the angle and material. Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light
and for determining the identity and structure of materials that emit or
absorb light. An optical prism’s design determines how light interacts with it.
Contact maintenant
Polarizing Beamsplitters (PBS) splits incident unpolarized light into two perpendicular linearly polarized light. Among them, p-polarized light passes through completely, while s-polarized light is reflected at 45 deg which makes the emitting direction of s-light vertical to p-light. Additionally, beamsplitters can be used in reverse to combine two
different beams into a single one. Beamsplitters are often classified
according to their construction:cube or plate.Cube PBS are fabricated using two typically right angle prisms.
Contact maintenant
Optical beamsplitters play a vital role in many laser-based
measurement and positioning systems. Although the operation of a typical
beamsplitter is conceptually simple, its performance characteristics
can dramatically affect the accuracy and repeatability of the overall
system. Consequently, understanding the variables that distinguish
beamsplitter performance is an important step in comparing and
specifying components.
Contact maintenant
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are
particularly well suited for high laser powers and UV wavelengths.
Contact maintenant
When choosing a window, the user should consider whether the material's transmission properties and the mechanical properties of the substrate are consistent with specific requirements of the application. Coating is another important issue for choosing a proper window. WISOPTIC offer a wide variety optical windows with different coatings, e.g. anti-reflection coated precision windows for Nd:YAG laser applications.
Contact maintenant
The Ceramic Laser Reflectors are high reflectance cavities used in solid state and CO2 laser systems. They are built either as a one-piece or two-piece system based on customer requirement.Ceramic cavities produce diffuse reflectance, which offers a very uniform beam profile. This diffuse reflectance also distributes light and consequently decreases hot spots in the pumped medium. These completely dense materials (e.g. Al2O3) exhibit higher strength and scratch resistance than traditional polymeric and thermoplastic materials.
Contact maintenant
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is one of the best commercially available material for diode-pumped solid-state lasers, especially for lasers with low or middle power density. For example, Nd:YVO4 is a better choice than Nd:YAG for generating low-power beams in hand-held pointers or other compact lasers. In these applications, Nd:YOV4 has some advantages over Nd:YAG, e.g.
Contact maintenant
The most notable benefit of aspheric lenses is their ability to correct for spherical aberration,
an optical effect which causes incident light rays to focus at
different points when forming an image, creating a blur. Spherical
aberration is commonly seen in spherical lenses, such as plano-convex or
double-convex lens shapes, but aspheric lenses focus light to a small
point, creating comparatively no blur and improving image quality.
Contact maintenant
Yb:YAG's advantage is a wide pump band and an excellent emission
cross section. It is ideal for diode pumping. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output. High efficiency means a
relatively small dimension Yb:YAG laser crystal will produce high power
output. Based on the YAG host crystal, Yb:YAG can be quickly integrated
into the laser design process.
Contact maintenant
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact maintenant
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Contact maintenant
Diffusion
Bonding Crystal consists of two, three or more parts
with different types. They are often used to decrease
thermal lens effect, that is conducive to the stability of lasers and
high-power laser operation.The Crystals being bonded could be a laser crystal doped
with laser-active ions, and its counterparts without dopants (e.g. YAG +
Nd :YAG).
Contact maintenant
Nd: YLF (Nd:LiYF4) is a laser
material that acts as an alternative to Nd:YAG. It is very suitable for working in mode-locked state to make pulse lasers at wavelength 1053nm, 1047nm, 1313nm, 1324nm and 1370 nm. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold.
Contact maintenant
Highly doped (50%) Erbium YAG is a well-known laser source for producing 2940nm emission, commonly used in medical (e.g. cosmetic skin resurfacing), and dental (e.g. oral surgery) applications due to the strong water and hydroxapatite absorption at this wavelength.Low doped (< 1%) Erbium YAG hase been studied as an efficient means to generate high power and high energy 1.6 micron 'eye-safe' laser emission thru 2 level resonant pumping schemes.
Contact maintenant
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12) crystal is an excellent material for passive Q-switching of Nd:YAG and other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Contact maintenant