Concave Spherical Lenses-manufacture,factory,supplier from China

(Total 24 Products for Concave Spherical Lenses)
Optical Lenses are designed to focus or diverge light and for imaging or alignment in an optical system. Optical Lenses, which may consist of a single or multiple elements, have a variety of applications. Lens forms can be divided into simple lenses (which include plano-convex lens, plano-concave lens, double-convex lens, double-concave lens, cylinder lens, drum lens, spherical lens in different shapes), achromatic lenses compound lens and multiple types.
Contact maintenant
The most notable benefit of aspheric lenses is their ability to correct for spherical aberration, an optical effect which causes incident light rays to focus at different points when forming an image, creating a blur. Spherical aberration is commonly seen in spherical lenses, such as plano-convex or double-convex lens shapes, but aspheric lenses focus light to a small point, creating comparatively no blur and improving image quality.
Contact maintenant
Optical lenses can be made in many shapes and may be comprised of a single element or form constituent parts of a multi-element compound lens system. They are used to focus light and images, produce magnification, correct optical aberrations and for projection, mainly controlling the focus or divergence light used in instrumentation, microscopy and laser applications.
Contact maintenant
An aspherical lens features a non-spherical but rotationally symmetric shape with a curvature radius that changes at various points between the center and the edge. Although producing this type of lens is difficult, when manufactured properly, it offers greater functionality than a comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of curvature across the entire lens. In contrast, aspherical lenses have a more complicated surface with a gradually changing curvature from center to edge.
Contact maintenant
A wave plate, also called a phase retarder, is an optical device that changes the polarization state of light by generating an optical path difference (or phase difference) between two mutually orthogonal polarization components. When the incident light passes through wave plates with different types of parameter, the exit light is different, which may be linearly polarized light, elliptically polarized light, circularly polarized light, etc.
Contact maintenant
Waveplates (retardation plates or phase shifters) are made from optical materials  with precise thickness such as quartz, calcite or mica, which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine.
Contact maintenant
Phase retardation plates, or waveplates, are polarizing optics used to manipulate the polarization state of the transmitting light without attenuating, deviating, or displacing the light. The working principle of the plate is to utilize the birefringence of certain materials which separates the incident light beam into two beams along two orthogonal optical axes within the medium. The phase retardation between the two beams of the incident light contributes to changes in the polarization state.
Contact maintenant
Periodically poled lithium niobate (PPLN) crystal and MgO: PPLN are a new kind of nonlinear optical crystal, which can realize high-efficiency frequency conversion such as frequency doubling, sum frequency, and optical parametric oscillation in wave brand from visible to mid-infrared.  When doped with 5% MgO, the photodamage threshold and photorefractive threshold of PPLN are greatly increased (compared to that of pure PPLN), and their performance is more stable and suitable for room temperature use.
Contact maintenant
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Contact maintenant
KTP (KTiOPO4) is one of the most commonly used nonlinear optical materials. For example, it’s regularly used for frequency doubling of Nd:YAG lasers and other Nd-doped lasers, particularly at low or medium-power density. KTP is also widely used as OPO, EOM, optical wave-guide material, and in directional couplers.KTP exhibits a high optical quality, broad transparency range, wide acceptance angle, small walk-off angle, and type I and II non-critical phase-matching (NCPM) in a wide wavelength range.
Contact maintenant
Bandpass Filters are used in a variety of industries, including machine vision,factory automation, security and surveillance, license plate recognition, medical and life science, agricultural inspection, aerial imaging, motion analysis, photography and cinematography.WISOPTIC's bandpass filters include mass collection of  dielectric-coated filters, colored glass filters, neutral density filters, spatial filters, and tunable optical filter based on liquid crystal technology. Specifically speaking, e.g.
Contact maintenant
Optical filters are used to selectively transmit or reject a wavelength or range of wavelengths. Their applications include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Optical filters are widely used in light system of life science, imaging, industrial, or defense industries. For example, Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths. Notch filters reject a portion of the spectrum, while transmitting all other wavelengths.
Contact maintenant
Optical filter is usually a component with a wavelength-dependent transmittance or reflectance. It's used to selectively transmit or reject a wavelength or range of wavelengths.  Filters with particularly weak wavelength dependence of the transmittance are called neutral density filters. The general applications of optical filters include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths.
Contact maintenant
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Contact maintenant
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Contact maintenant
LiNbO3 crystal is a low cost photoelectric material with good mechanical and physical properties as well as high optical homogeneity. It has been widely used as frequency doublers for wavelength > 1mm and optical parametric oscillators (OPOs) pumped at 1064nm as well as quasi-phase-matched (QPM) devices. With preferable E-O coefficients, LiNbO3 crystal has become the most commonly used material for Q-switches and phase modulators, waveguide substrate, and surface acoustic wave (SAW) wafers, etc.
Contact maintenant
High temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes.
Contact maintenant
The improved hydrothermal-grown KTP crystal overcomes the common electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage threshold, large effective electro-optic coefficients and lower half-wave voltage.  KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact maintenant
The high damage threshold makes BBO cells more attractive than others in the high power systems. Like LiNbO3 Pockels cells, BBO Pockels cells work in transverse mode, which makes the cells very compact, and the half-wave voltage designable. BBO Pockels cells are also suitable for systems with high repetition rates.WISOPTIC has been granted of several patents for its technology of BBO Pockels cells. WISOPTIC’s mass products of BBO Pockels cell are gaining worldwide customers’ interest and trust for its high cost performance.
Contact maintenant
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Contact maintenant
A Pockels cell driver is a high-voltage regulated power supply, either pulse or continuous, allowing to control a birefringence of an electro-optical crystal (KTP, KD*P, BBO, etc.) in order to drive the polarization direction of the light propagating through the crystal.WISOPTIC has developed and produces a variety of Pockels cell drivers for different applications: from very simple compact devices for q-switching to precise and powerful fast models for pulse picking, cavity damping, regenerative amplifier control, etc.
Contact maintenant
Basically all Pockels cell drivers are made based on solid-state electronic technology, using high voltage transistors such as MOSFETs. Multiple high voltage transistors may have to be stacked, taking care to achieve an even distribution of voltage across those. Instead of using some heavily isolated floating gate drive circuitry for the different transistors, one may use certain advanced ideas such as implementing so-called avalanche switch stacks involving avalanche diodes and/or avalanche bipolar transistors.Device lifetimes can be very long, provided that properly engineered
Contact maintenant
HGTR (high anti-grey track) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.KTP Pockels cells made by HGTR-KTP crystal are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact maintenant
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal produces linear changes in the birefringence of the crystal (in contrast to the Kerr Effect, which is quadratic with E). Pockels cells are essential components in various optical devices such as Q-switches for lasers, free space electro-optical modulators, free space switches.   WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Contact maintenant
Relate News
3 The main application of lithium tantalate crystal3.3 E-O Q-SwitchThe basis of laser Q-switched technology is a special optical component - a fast intracavity optical switch generally called Q-switch. The Q value is an indicator for evaluating the quality of the optical resonant cavity. The higher the Q value, the lower the required pump threshold and the easier it is for the laser to oscillate. The purpose of laser Q-switching technology is to compress the pulse width and increase the peak power.
In 1962, the American scientist McClung F J reported for the first time that the silver mirror of the ruby laser resonator had hole burning damage, which was the first public report on the laser damage of optical components. The subsequent invention of Q-switching technology and mode-locking technology increased the peak power of laser pulses by several orders of magnitude. The problem of laser damage runs through and affects the design and operation of lasers, and promotes the development of optical materials and optical component manufacturing technologies.
As the source manufacturer of many kinds of function crystals and the leading producer of DKDP Pockels cell in China, WISOPTIC provides high cost-effective products to its customers worldwide and gains substantial trust from all of its business partners. Every year over 40% of WISOPTIC's products are exported to Europe, UK, North America, Korea, Israel, etc.Normally WISOPTIC takes parts in at least one of the important exhibitions in the industry of photonics and laser, such as Laser World of Photonics (Munich/Shanghai), SPIE Photonics West (San Francisco), KIMES (Seoul), PHOTONIX (To
IntroductionLithium tantalate (LiTaO3, referred to as LT), as an excellent multifunctional crystal material, has good piezoelectric, electro-optical and pyroelectric properties, and is ideal for making surface acoustic wave (SAW) filters, resonators, tuners, Q switches and pyroelectric detectors. Devices made from LT crystal (www.wisoptic.com) are widely used in the automotive electronics, 5G communications and infrared detectors, and have broad market prospects.In 1965, Ballman used the pulling method to grow LT single crystal for the first time.
Study on the efficiency and temperature robustness of chirped PPLN crystal in 1064nm frequency doubling experiment - 06  4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOWhen the input 1064nm light is 22.53W, the curves of the frequency-doubled optical power generated by CPPLN (www.wisoptic.com) and LBO (www.wisoptic.com) with temperature are shown in Figure 5(a) and Figure 5(b). The half-maximum full width of the frequency-doubled optical power of CPPLN with respect to temperature is 8.40℃, ranging from 24.19℃ to 32.59℃.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterThere are many studies on filters in SAW devices. Wave filters have the advantages of low transmission loss, high reliability, great manufacturing flexibility, analog/digital compatibility, excellent frequency selection characteristics, and can realize a variety of complex functions.
04 Theoretical study of thermal properties The above experiment shows that the BBO crystal (www.wisoptic.com) generates serious heat in the process of frequency quadrupling. It is known that the energy band gap of the BBO crystal is 6.56 eV, while the single photon energy of 266 nm and 532 nm lasers is 4.66 eV and 2.33 eV respectively. Theoretically, the crystal does not have single photon absorption of 266 nm and 532 nm lasers.
03 Experimental results and analysisBy optimizing the cavity length parameters of Nd:YVO4 (www.wisoptic.com) laser under high-power pump injection, a 1064 nm high peak power narrow pulse laser output with an average power of 26 W, a repetition frequency of 20 kHz, and a single pulse width of 5 ns was obtained when the 888 nm pump light power was 65 W; after the 1064 nm fundamental frequency infrared light was doubled by the LBO crystal, a 532 nm laser with a maximum power of 16 W was finally obtained, and the infrared to green light conversion efficiency reached 61.5%.
Introduction High-power all-solid-state deep ultraviolet (DUV) lasers have many important applications in scientific research, medical diagnosis, and industrial manufacturing, such as Raman spectroscopy, photobioimaging, integrated circuit etching, and precision micromachining, due to their compact structure, high single-photon energy, and good long-term stability.
2.1 Manipulating and understanding laser damage precursors through material growth processesCombined with the statistical model, information such as precursor density and threshold distribution can be extracted from the damage probability curve, which indirectly reflects the information of the precursor. The analysis shows that the KDP crystal (www.wisoptic.com) mainly contains a precursor with a threshold distribution.
x

Soumis avec succès

nous vous contacterons dès que possible

près