High temperature phase of α-BBO Crystal (BaB2O4)
is one of the excellent birefringent crystals. It is characterized by
large birefringent coefficient and wide transmission window ranged from
189nm to 3500nm. Due to its high chemical stability and medium hardness,
α-BBO is fabricated easily into many kinds of optical components.The
physical, chemical, thermal and optical properties of α-BBO are similar
to those of β-BBO.
Contact maintenant
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Contact maintenant
High
temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal
with a large birefringence over the broad transparent range from 189 nm
to 3500 nm. The physical, chemical, thermal, and optical properties of
alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal.
However, there is no second order nonlinear effect in alpha-BBO crystal
due to the centrosymmetry in its crystal structure and thus it has no
use for second order nonlinear optical processes.
Contact maintenant
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Due to the low piezoelectric coupling coefficients of BBO, BBO Pockels cells function at repetition rates of hundreds of kilohertz.
Contact maintenant
Beta-BBO crystal is an important nonlinear optical crystal
with combination of unique optical properties, such as broad transmission and
phase matching ranges, large nonlinear coefficient, high damage
threshold and excellent optical homogeneity. The β-BBO crystal is an efficient material for the second, third and fourth
harmonic generation of Nd:YAG lasers, and the best NLO material for the
fifth harmonic generation at 213 nm.
Contact maintenant
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Low
piezoelectric ringing makes this Pockels cell attractive for the control
of high-power and high-pulse repetition rate (hundreds of kilohertz, up to 1MHz) lasers.
Contact maintenant
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact maintenant
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Contact maintenant
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Contact maintenant
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. KDP are also excellent
electro-optic (EO) crystals with high EO coefficients, thus popularly
used as EO modulators and Pockels cells for Q-switched
lasers.
Contact maintenant
Characterized by the excelent UV transmission, high damage threshold,
and high birefringence, KDP (Potassium Dihydrogen Phosphate) and KD*P
(Potassium Dideuterium Phosphate) are useful commercial NLO materials
for doubling, tripling and quadrupling of Nd:YAG laser at room
temperature or an elevated temperature. They are also excellent
electro-optic (EO) crystals with high electro-optic coefficients, widely
used as electro-optical modulators and Pockels cells for Q-switched
lasers.
Contact maintenant
Erbium doped Yttrium Aluminum Garnet (Er:Y3Al5O12 or Er:YAG) combine
various output wavelength with the superior thermal and optical
properties of YAG. The emission wavelength of Er:YAG with doping concentration of 50% is
2940nm, which is at the position of water absorption peak and can be
strongly absorbed by water molecules. Therefore, Er:YAG laser is widely used in
plastic surgery and dentistry.
Contact maintenant
Periodically poled lithium niobate (PPLN) crystal and MgO: PPLN are a new kind of nonlinear optical crystal, which can realize high-efficiency frequency conversion such as frequency doubling, sum frequency, and optical parametric oscillation in wave brand from visible to mid-infrared. When doped with 5% MgO, the photodamage threshold and photorefractive threshold of PPLN are greatly increased (compared to that of pure PPLN), and their performance is more stable and suitable for room temperature use.
Contact maintenant
Readily available stock of periodically poled MgO:LN crystals can be provided
on short timescales to rapidly meet your application needs, providing
the capability to efficiently generate laser light in a wide range of
wavelengths.MgO:PPLN SHG crystals are available for a wide range of common pump
laser wavelengths from 976 nm to 2100 nm, allowing generation of light
between 488nm and 1050nm.MgO:PPLN OPO are available for 515nm and 1064nm pump sources, allowing
continuous wavelength generation in a selection of ranges in the visible
and IR.MgO: PPLN DFG Crystals are available for
Contact maintenant
Readily available stock of periodically poled LN (PPLN) crystals can be provided
on short lead time, with various specifications of sizes and periods.PPLN SHG crystals are available for pump
laser wavelengths 976-2100 nm, generating light 488-1050nm.PPLN OPO crsytals are available for pump sources 515-1064 nm, generating visible
and IR CW beams.PPLN DFG crystals are available for various combinations of pump sources, generating wavelengths 2-5.5 um.PPLN SFG crystals are available for various combinations of pump
sources, generating wavelengths 500-700 nm.
Contact maintenant
Gray Track Resistant (GTR) KTP crystals developed by hydrothermal method overcomes the common phenomenon of
electrochromism of the flux-grown KTP, thus has many advantages such as
high electrical resistivity, low insertion loss, low half-wave voltage,
high laser damage threshold, and wide transmission band. So it's very suitable for high power density
applications, where regular flux-grown KTP crystals will suffer from
gray track damage.GTR-KTP crystal has gray track resistance sufficiently greater than
typical flux-grown KTP.
Contact maintenant
HGTR (high anti-grey track) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.KTP Pockels cells made by HGTR-KTP crystal are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact maintenant
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Contact maintenant
KTP Pockels are based on hydrothermal-grown high resistivity KTP crystals overcomes the common
electrochromism damage of flux-grown KTP. Hydrothermal-grown KTP crystals have better optical homogeneity and higher damage threshold
comparing to RTP crystals. This KTP crystal has large effective electro-optic coefficients and lower
half-wave voltage. The Q-switch is built utilizing thermally compensated
double crystal designs.
Contact maintenant
The improved hydrothermal-grown KTP crystal overcomes the common
electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage
threshold, large effective electro-optic coefficients and lower
half-wave voltage. KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated
double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contact maintenant
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It
has advantages of higher damage threshold (about 1.8 times that of
KTP), high resistivity, high repetition rate, no hygroscopic or
piezoelectric effect.
Contact maintenant
Basically all Pockels cell drivers are made based on
solid-state electronic technology, using high voltage transistors such
as MOSFETs.
Multiple high voltage transistors may have to be stacked, taking care to
achieve an even distribution of voltage across those.
Instead of using some heavily isolated floating gate drive circuitry for
the different transistors, one may use certain advanced ideas such as
implementing so-called avalanche switch stacks involving avalanche
diodes and/or avalanche bipolar transistors.Device lifetimes can be very long, provided that properly engineered
Contact maintenant
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Contact maintenant
A Pockels cell driver is a high-voltage regulated power supply,
either pulse or continuous, allowing to control a birefringence of an
electro-optical crystal (KTP, KD*P, BBO, etc.) in order to drive the
polarization direction of the light propagating through the crystal.WISOPTIC has developed and produces a variety of Pockels cell drivers
for different applications: from very simple compact devices for
q-switching to precise and powerful fast models for pulse picking,
cavity damping, regenerative amplifier control, etc.
Contact maintenant